Therapeutic Recommendations for HIV Positive and AIDS Patients.

The diverse diseases which define the AIDS syndrome: fungal infestations of the lungs, the mucous membranes, the intestines, the brain and inner organs, degenerative transformations of the endothelial cells of the vascular system and lymphatic pathways (Kaposi’s sarcoma) and the fast and severe course of endemic infectious diseases like Tuberculosis, Candidiasis, Cryptococcosis, Toxoplasmosis, Mycobacterium avium, Herpes simplex, Leishmania and Salmonella septicemia are the consequences of antibiotic induced mutations in the genome of the causing agents, which induces resistance to various antibiotics and the building of cell-wall deficient L-forms (CWDB), which cannot be recognised and eliminated sufficiently by immune cells anymore so that they can nest in immune cells and other cells, causing latent inflammatory reactions, which under the influence of stressors can induce ongoing inflammation in singular organs, triggering chronic infections of resident bacteria normally kept under control, which can finally cause organ failure. Repeated administration of antibiotics also causes lasting damage to segmented filamentous bacteria (SFB), which produce substances like short chain fatty acid used for the building of the gut mucosa and the protecting film on it, and emit signals, which activate toll-like receptors in the tissue of the intestinal mucosa (TLR), which themselves activate via transmitters the formation immune cells such as CD-4 –T cells, Th17 T-cells and regulatory T-cells (Treg), that regulate immune reactions in the whole organism. On the other hand repeated administration of antibiotics causes lasting changes in the composition of the bacterial flora in the intestines, so that materials for the breakdown of nutrients and the reduction of sulphur-compounds from it, the building of ATP and for the defence against non commensally acting bacteria are not built sufficiently any more. In this situation bacteria can easily penetrate into the intestinal mucosa, where they meet on specific immune cells and receptors, activating various immune cells such as dendrites and macrophages, which get blocked after ongoing over-activation, allowing gut bacteria to penetrate into lymphatic tissues and later via the blood stream into distant organs, such as the genital tract and the oral cavities, where then the composition of the bacterial flora is changed, so that overgrowing bacterial strains, can activate via their products the so-called HIV Transcription attractor (HIV-1-Tat), which is considered to be a product of the HI-retrovirus, that should be a by itself pathogenic entity, that causes the fast course of more than 30 infectious diseases, that can define the AIDS syndrome. (The promoters of the HIV-AIDS-hypothesis then speak of co-infections of HIV and the strains causing these diseases.) Antibiotics also cause lasting damage to the mitochondria, which form from nutrients and oxygen the energy carrying molecules (ATP) used in cells for the functioning of the organism. Such damages are caused by the continuous or repeated administration of commonly used antibiotics: Aminoglycosides, such as, Erythromycin, Gentamycin, Azithromycin, Streptomycin, Amikacin, Tetracyclides, such as Doxycylin, Macrolides such as Erythromycin und Azithromycin, and Chloramphenicol), which all bind near active sites of ribosomes inducing the formation of dysfunctional ribosomes and thereby lasting damage to the translational system in bacteria and in the mitochondria. Other antibiotics (Sulphonamides such as TMPSMX, Bactrim and Septrim, induce dysfunction in mitochondria by blocking the production of folic acid, purines, nitric oxide and the enzyme DHFR and of the production of glutathione in the liver, needed for the transportation of reduced oxygen into the cells, where it is used for energy production (ATPasis. Under such conditions the energy in cells is
predominantly produced without oxygen by glycolysis, which leads to a severe decline in the growth of immune cells (such as CD-4 T-cells) and other cell systems (for example in the intestinal mucosa) and consequently to longer lasting inflammatory reactions, which induce a persistent switch in the messengers of CD-4 T-cells (Th1-Th2-switch). Further causes of continuous inflammatory reactions can be: repeated wounding, contaminated drinking water, poor nutrition, allergic reactions to gluten and to foodstuffs containing histamines.

Blockages to mitochondrial membranes and their ion channels by antibiotics, heavy metals and other environmental toxins simultaneously impair the energy production in the cells (ATPase), which leads to exhaustion of the body’s own antioxidants (glutathione molecules) and consequently impairs the production of B cells in the bone marrow as well as the activities of circulating T cells. All off this leads to a reduction in the production of gaseous nitrogen oxides (NO) in immune cells and other body cells. If this situation persists for an extended period of time, then T-4 cells will be predominantly produced with a Th2 profile of messengers, which on contact with B cells instigate, via antibodies, defence capacities against bacteria and toxins but still to a minor degree as T4 helper cells with a Th1 cytokine profile, that activate killer cells to attack cells carrying fungi, viruses and mycobacteria and to trigger macrophages to break down immune complexes from antigens and antibodies. If this situation lasts longer, then the NO gas production becomes completely disrupted leading to degenerative processes (Kaposi’s sarcoma), to amplified reverse transcription and through an increase in cell death to an increased release of those proteins of the cell skeleton and the mitochondria, that are termed as HIV particles. In this process increased amounts of antibodies are produced against the body’s own cell envelope and cell skeleton proteins and against a multitude of diverse antigens which on reaching a certain level in the HIV antibody tests, lead to the ‘laboratory result’ of HIV positive. After repeated administration of antibiotics, the formation of antibiotic resistant strains and the damage to the mitochondria by antibiotics leads to a lasting inflammatory reaction (with subfebrile temperature, diarrhoea, night sweat, loss of weight. All these interactions show clearly, that the HIV-tests detect antibodies to bacterial lipids (LAS), occurring after administration of antibiotics inducing cell wall deficient filamentous bacteria, and to parts of the mitochondria but no antibodies to transmittable genomic parts (endogenous retroviruses) termed as Human immune deficiency retroviruses.

An enduring drop in T 4 helper cells and a continual Th1–Th2 cytokine switch of T-4 cells results from:

- Antibiotics which do permanent damage to gut bacteria that produce substances to exploit nutritional components, to destroy foreign (non organ specific) bacteria, to trigger the body’s own defence substances, to build the epithelium of the gut mucosa and the gel for its protection. This leads to damage to the epithelium and an increased permeability of the gut mucosa and consequently to repeated contact of immune cells with bacteria leading to inflammatory reactions that can no longer be governed locally and later induce inflammation in the whole organism. By destruction of intestinal bacteria in the small intestine, triggering the production of Th17 cells which together with regulative T cells (Treg) govern the production of all T cells, certain antibiotics cause in time, a continuous reduction in all T-cells in the organism. Additionally antibiotics block the enzyme dihydrofolate reductase required for the production of tetrahydrofolate which in turn is necessary for the production of glutathione in the liver and for the production of tetrahydrobiopterin required for the production of NO gas by which killer cells attack cells, carrying fungi, viruses and mycobacteria. Certain classes of Antibiotics (chloramphenicol, tetracykline, macrolides, quinolone, lactams etc.) block by inducing dysfunctional
ribosomes the proteins formed by them on the cell wall and coded in the cell core, and enzyme activating amino acids for the synthesis of peptides, imported to the mitochondrial membranes and there translated into energy production (ATP) which also are responsible for the reducing of toxic oxygen radicals. Sulfonamides with trimethoprim (Bactrim, Septrin, TMP-SMX), insecticides (e.g. lindane for treatment of crab lice), chemotherapeutics and nucleoside analogs (like AZT, Nevirapine etc) block the formation and release of folic acid and purines necessary for the development of DNA in mitochondria and the formation of iron and copper containing enzymes which are needed for the respiratory cycle of mitochondria. They seal the mitochondrial membrane and thus block the production of energy taking place there and the degradation of oxygen radicals which plays a central role in detoxification.

- Frequent or repeated antigen contact from repeated wounding in intravenous drug consumption, dirty drinking water, frequent partner change or sexual practices (such as unprotected anal intercourse or oral contact to the anus), that increases the risk of infections by sexually transmittable infections, and repeated accession of foreign proteins in the bloodstream (by coagulation proteins in blood preparations or sperm).

- Malnutrition, (protein deficiencies, hyperacidity, hyperglycemia, mucous obstruction via milk products and allergic reactions to foodstuff, gluten-containing cereals, that induce the release of histamine, and the intake of antibiotics from foods, food preservatives and food additives that alter the balance between ‘good’ and ‘bad’ bacteria in the intestine and damage the bacteria the materials for the tissue of intestinal walls and the protecting film on it leading to little leaks in the gut.

- contact with heavy metals (mercury, aluminium, lead, arsenic etc.) in the environment, in contaminated water, in foodstuffs, in dental fillings and vaccine carrying substances (Thiomersal), Contact with toxins in foodstuffs (preservatives, fungicides, herbicides and insecticides), azo pigments and toxic textile auxiliary substances. They all induce, firstly the activation of cell-mediated defences with excessive release of NO gas and subsequently an inhibition of type-1 cytokines (IL-2, IL-12, IFNγ) to prevent the destruction of tissues. A long-term change of the redox milieu in the cells results from an increased consumption of thiols and a sustained type-2 cytokine (IL-4, IL-6 and IL-10) counterregulation with an increased production of Th2 helper cells, which stimulate B cells to an increase in antibody production. This eventually leads to autoimmune reactions in which antibodies are formed against the bodies own cells (amongst others T4 helper cells and intestinal mucosa cells) which dock onto them and with them establish immune complexes. These conditions lead to an inflammatory activation of macrophages which then are unable to adequately break down the immune complexes (consisting of auto-antibodies and the body’s own cell proteins) and via mediators trigger the continuation of autoimmune reactions.

- the absorption of nitrites via inhalation (poppers), contaminated water and foodstuffs (mainly in developing countries). Nitrites inhibit the synthesis of type-1 cytokines and the maturation of T4 helper cells. Just like Azathioprine, antibiotics, chemotherapeutics and fungicides they lead to a long-term Th1–Th2 switch and thus, eventually to swellings and degenerative transformations in the endothelial
cells of blood vessels of the lymphatic pathways (Kaposi’s sarcoma) and other tissues.

- a prolonged depletion in glutathione molecules, as can happen with an impairment of glutathione production in the liver through chronic hepatitis, alcohol consumption, prolonged intake of oxidative substances and antibiotics and through a deficit of sulphur-containing cross-linked proteins (cysteines) in nutrition. Prolonged deficiency of glutathione weakens the transport and gradual reduction of oxygen into the cells, with the effect that mitochondrial energy production in the cells is disturbed and killer cells destroy themselves with NO gas when they attack cells containing fungi, viruses and mycobacteria. An ongoing deficit of glutathione favours the spreading of fungi (e.g. candidas albicans), in the intestines and mucous membranes, which then release toxic degradation products, that impair the production of glutathione in the liver. These products can only be broken down by glutathione and glucuronic acid. A prolonged deficit in glutathione in antigen-presenting cells eventually leads to a Th-2 predominance.

The Consequences of Antiretroviral and Antibiotic Treatment.

The so-called HIV retroviruses, which today are made responsible for 29 AIDS defining diseases, have yet to be isolated, photographed and biochemically characterized according to Koch’s postulates and Montagniers criteria for retroviruses, as transmittable, propagable viruses. In AIDS-defining illnesses only known bacteria, parasites and fungi as well as bacterial lipposacharides, autoantibodies and immune complexes of antigens and antibodies are transmitted via blood, blood preparations, semen and sputum, all of which can induce an ongoing inflammatory reactions in immune deficient recipients.

For Gallo and Montagnier’s postulation of ‘HIV retroviruses’ in 1984, lymph cells were cultivated with leukemic, white blood cells and embryonic cells, which both exhibit an increased activity in reverse transcription that was further activated by doses of hydrocortisone. The increase in the incidence of reverse transcription in these cell cultures was then interpreted as proof of the existence of a new, infectious, transmittable virus. The later developed HIV tests correspondingly identify an increased titter of antibodies against leukemic cells and protein of the cell skeleton and the cell wall of bacteria and human cells which appear in a higher degree in various immune reactions, as the presence of the HIV-Retrovirus.

Nucleoside analog substances (Acyclovir, Nevirapine, DDI etc.), even after a short time of administration, have a sustained effect on the maturation of all immune cells in the bone marrow: the B-cells, the T-cells that are later developed in the thymus, the antigen-presenting dendritic cells and the macrophages. The damage to the new growth of B-lymph cells means that their activities and numbers are severely compromised and defence by antibodies against bacteria is weakened so that they can disperse in cells without hindrance. When T-4 helper cells then circulate they find only reduced amounts of B-cells in the lymphatic tissues that they can activate. As T-4 helper cells with a Th-2 cytokine profile they then circulate in the plasma and lymphatic tissues for 24 hours without a function. This results in a higher measurable number of T-4 helper cells in the plasma.

Nucleoside analogue substances, reverse transcriptase inhibitors and fusion inhibitors severely reduce the levels of thiol and thereby further aggravate the already present glutathione deficits in HIV-test positives persons. Glutathione deficiency in antigen-presenting cells leads to the
formation of T-4 helper cells principally with a Th-2 cytokine profile, which trigger an increased production of antibodies and only a small number of the Th-1 cells that activate defence against fungi, viruses and mycobacteria via macrophages. Protease inhibitors impair the development of proteins for nucleotides needed for the structuring of new cells in all organs. Treatment results in diabetes, the shift of fatty acids from the extremities, retinitis, formation of kidney stones and to liver failure.

Antibiotics (Bactrim, Septrin, TMPSMX etc.) which are used frequently in sexually transmittable infections such as Chlamydia, Hepatitis, Syphilis and Gonorrhoea) and also preventively against infections that with a positive HIV-test can define the AIDS-syndrome damage remaining bacteria in the small intestines which then can no longer trigger production of Th17 cells that together with regulative T cells (Treg) govern the production of T cells and their activities. They transform the composition of the gut flora and reduce the number of beneficial gut bacteria that produce substances to digest nutritional components, for protecting the gut mucosa and for triggering the release of the body’s own defence capacities. They change the transportation and the release of trace elements such as the vitamins A, B2, B3, B6 and B 12, and Magnesium which as also Beta-Carotene, Vitamin E, Selenium and Magnesium are essential for the metabolism of nerves, muscles, and the the brain, of hormones and the blood building, the building of neuro transmitters and for cell division and all are deficient in al HIV-Test-Positives and AIDS-Patients, leading in them to depression, lacking appetite lack in Testosterone, weakness in concentration, high blood fat values, muscle wasting and diminished building of sperms. Antibiotics also block the building of glutathione in the liver, which is essential for the transportation of oxygen into the cells used for the building of the energy carrier molecules ATP and for the building of nitric oxide NO, essential for the killing of cells containing mycobacteria, fungi and viruses. (Similar effects are induced by high doses of alcohol, caffeine and by Antihistamines, Diuretics, Anti-Diabetics, Neuroleptics, Aspirin and anti-baby pills.)

Antibiotics also block the formation of folic acid, purines and DHFR enzymes, damage glutathione production in the liver, NO production and oxygen transport in the cells, in the process continuously blocking the whole cell-mediated defence resulting, via a permanent Th1–Th2 switch, in ongoing functional immune deficiency. By bloking cell respiration they promote fungal infestations (PCP, Candidas albicans etc.) in the intestines, the lungs and on the skin. Long-term dispensing of antibiotics leads to an inhibition of tetrahydrofolate necessary for uracil production and thus results in an inhibition of the T-cell growth factor, interleukin-2. By inhibiting the biologically active folic acid, antibiotics also impair the transformation of the RNA base, uracil, to the DNA base thymine and thus hinder DNA repair via reverse transcription. Additionally, by altering the genetic structure in bacteria, which exchange plasmids with each other, they increasingly cause antibiotic resistance.

Nucleoside analogue substances (like AZT, DDI, DDC etc.) reduce by blocking the development of DNA for a limited time bacterial infections, parasites, fungal infestations and the production of the non-characteristic particles with mediators (RNA) that are termed as HIV particles, as well as antibodies to the body’s own cell proteins. This process further promotes autoimmune reactions. However, nucleoside analogues are only 1% phosphorylated and practically not integrated in the nucleus where they are supposed as DNA terminators to inhibit the ‘HI’ viruses. Nucleoside analogue drugs and protease inhibitors, furthermore, cause disturbances to the biosynthesis of proteins and enzyme proteins and by impairing the production of nucleic acids lead to damage both in the nuclear and mitochondrial DNA. Sooner or later this leads to sever damage to the brain, muscle cells (heart attacks and paralyses) and in the internal organs as well as to the formation of cancer cells.
Under the above-mentioned conditions the cells increasingly switch to an oxygen-free fermentation metabolism, burdening the organism with lactic acid or causing wasting, in which the cells draw essential substances, as an alternative, directly from muscle proteins. With continuing damage to mitochondria through the blockage of their membranes, glutathione deficiency and DNA damage the symbiosis between mitochondria and the nucleus breaks down (Warburg Phenomenon) with the consequence that nuclear sections with agents that had been previously successfully isolated, are activated and the survival of nuclear DNA is increasingly assured by reverse transcription (termed as Immune Reconstitution Inflammatory Syndrome). In the process the numbers of measurable RNA in the plasma increases (increase in the so-called HI viral load). The consumption of RNA markedly increases for repairing the increasingly recurring DNA damage caused by combination therapy (ART), so that the numbers of cell particles decline. This is measured by means of the polymer chain reaction test (PCR) as “HIV viral load”. Through disruption to the synthesis of nucleic acid the coding patterns of nuclear and mitochondrial DNA are altered by ART therapy and the DNA repair, via reverse transcription, is further impaired. Depletion of the repair enzymes eventually leads to the products of reverse transcription no longer being able to be adopted by DNA (renewed rise in the ‘viral load’ and irrevocable resistance to a certain combination therapy). Due to its antibiotic and cell-toxic properties ART treatment continuously induces at the same time mutations in bacteria, fungi and parasites, during which surviving, mutated, strains express again at higher rates the signals and structures attributed to HIV (rise in ‘viral load’) which is then treated by new ART-formulas consisting of other nucleoside analogue substances, protease and fusion inhibitors and different antibiotics, which then results again in a decline in resistant strains and the signals and structures attributed to HIV (decline in ‘viral load’) which is measured by means of PCR testing using an unknown formula belonging to the patent secret of its producers. From these interactions it can be understood that these HIV-tests detect the products of the growing or declining numbers of resistant strains, the degree of their infectiosity respectively its inhibition by means of ART and antibiotics and the degree of damage to the mitochondrial translation system by ART and antibiotics.

Elements of a Compensatory Therapy to support the Immune System and the cell symbiosis:

- Refraining from acidic or acidogenic foodstuffs, which damage gut flora often triggering allergic reactions, namely refined sugar, saturated fats, milk and milk products, preservatives, yeast, histamine-containing foodstuffs like mayonnaise, chocolate, tomatoes, cheese, nuts and sardines and gluten-containing cereals, all of which increase the permeability of the intestinal mucosa for bacteria, toxic degradation products and nutrition components. They can be substituted by a diet of eggs, double cream, whey, potatoes, rice, gluten-free cereals (rice, maize, buckwheat, amaranth and quinoa), unrefined cane sugar and honey as well as fish, pork, fats with unsaturated fatty acids, hard raw vegetables and cooked vegetables. Which antibodies are being produced against which foodstuffs in the intestines can be established by means of food antibody tests. This allows the provision of an individual dietary plan in which allergy causing foods can be avoided.

- A leaky gut can be detected by Secretory Immunoglobulin A (A-sigA). A lack in A-sigA is reflected in a reduced defence capacity of the mucosa. High levels of A-sigA are occurring with bacterial, parasite, fungal and viral infections, and settlement of non-organ specific populations at inadequate places, Alpha-1-Antitrypsin, which is an
enzyme of the liver, which is released in higher quantities into the gut lumen and consequently in the stool at the occurrence of leaky or hurtled mucosa (termed as leaky gut), at which toxins, microbes and foreign proteins can invade deeper into the organism. Albumin, calprotectin and lysozyme are proteins and enzymes, which are present in higher degrees during inflammations of the gut, such as Morbus Crohn or Colitis ulcerosa. Calprotectin and lysozyme are considered to be more accurate. Haemoglobin/haptoglobin complex heightened haemoglobin values are measured in inflammation, polyps and haemorrhoids. M2PK in stool. M-2 pyruvate kinase is an enzyme that occurs in higher levels in stool at the outset of inflammation and tumour formation in the gut. The settlement of the gut can be analysed by means of stool probes. The stool is placed in a test tube, pour in oxygen-gel, as oxygen is toxic for most of the gut bacteria, (which can induce wrong results in such analysis).

- By means of bacteria strains for the small intestines (Lactobacillus Acidophilus, Lactococcus lactis, E. faecium, Bifidobacterium bifidum, Lactobacillus casei, Lactobacillus salivarius,) mixed with fructo Ooigosacharide, rice bran and trace elements and bacteria strains for the large intestine termed as EM Effective Microorganisms (Bacillus subtilis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium longum and many more) cultivated in fermented sugar molasses with vegetable matter from basil, ginger, fennel, olive leaves, oregano, sage and grape-fruit pip extract the gut flora can be revitalized, which promotes the production of Th17 cells that together with T-regulatory cells (Treg) govern the production of all T cells. Healing of the gut mucosa can be supported by administration of L-carnitine, L-gutamine (10-40 Gr. daily), N-acetylcysteine 2-4 Gr.daily, quercetin, pantothenic acid, vitamin B6, riboflavin, zinc and magnesium and by colostrum (first milk of cows or goats), which contain important trace elements, messenger substances and growth factors and by cold filtered goat whey proteins or Hemp Proteins.

- Parasites and fungi (Candida albicans) in the gut can be treated with vegetable bittering agents from papaya leaves, olive leaves, black walnuts, vermouth, dianthus, ginger, juniper, quassia wood, gentiana, dandilion, hyssop, red clover, thyme, papaya semen and and leaves (as tea) caprylic acid, biotin, Aloe Vera, and fermented powder from grain.

- Curcumin, extracted from the spice plant Curcuma longa (turmeric), inhibits in the ultraviolet range of light those signals responsible for the progression of inflammations and degenerative developments (cancer). In new Curcumin containing preparations the curcumin is supplemented with peperino, quercetin, molybdenum, grape seed extract and the medicinal mushroom Agaricus blazei murill, which boost its effect. Curcumin cannot be taken in conjunction with high doses of vitamin C, E and beta carotene, especially in cases of glutathione deficiency, as it then changes into a substance that has a pro-oxidative effect and it can no longer deploy its anti-inflammatory effects and thus aggravates a glutathione or thiol deficiency.

- Polyphenols from green tea, ginger, vine leaves, diverse cabbage types, ginko biloba, quercetin, wheatgrass and other plants, bind toxic oxygen degradation products, have an inflammation inhibiting effect, support the programmed death of degenerating cells, have a supportive effect on cells and the mitochondrial membrane and thus provoke a transposition of blocked immune reactions (Th1-Th2 switch).
• The negatively charged basic tissues can be protected by polyanions (heparin and heparinoids) in agar agar, fish cartilage or green lipped mussel preparations. As natural anti-proteases they can slow down progressive inflammatory reactions, going along with enhanced cell-division, that lead to autoimmune reactions and increased reverse transcription. By supporting cell-mediated defence systems they can restart flexible immune responses.

• Taking vitamin D3 (5-10 drops = 2,000-5,000 IUs daily) and vitamin B12 (1,000 micrograms daily) at mealtimes can promote the production of T4 cells with a Th-1 cytokine profile, thus slowing down continuous autoimmune reactions.

• Glutathione production can be boosted by the supply of sulphur-containing protein mixtures (N-acetyl cysteine, 3-8 Gr. daily) cold filtered goat whey proteins and folic acid (5-20 mgr. daily). Reduced Glutathione is available bound to soy lecithine. Glutathione production and NO synthesis in the liver, which are decisive for the regulation of the T-4 immune response and for the regression of tumours, can be supported by doses of glutamine (10-20 gr. daily also by infusion) and L-arginine (20-30 gr. daily). L-carnitine is necessary for the incorporation of long-chain fatty acids (triglycerides) into the mitochondria. A deficiency of L-carnitine impedes the energy-releasing process of energy production in mitochondria. By the administration of 6 grams of L-carnitine daily for 14 days, this deficiency can be resolved. After specific laboratory analyses these substances can be administered in higher doses orally or by means of mixed infusions (Ingredients: Taurine 1500 mg, L-Carnitine 1000 mg, Glutathione 600 mg, L-Lysine 300 mg, Acetylcysteine 300 mg, Vitamin C (Ascorbic Acid) 300 mg, L-Arginine 200 mg, L-Carnosine 200 mg, Thiamin Hydrochloride (Vitamin B₁) 100 mg, Nicotinamide (Vitamin B₃) 100 mg, Panthenol (Vitamin B₅) 100 mg, Pyridoxine, Hydrochloride (Vitamin B₆) 100 mg, Calciumchloride (CaCl₂) 45 mg, Magnesium-chloride (MgCl₂) 40 mg, Folic acid 20 mg, Potassiumchloride (KCl) 15 mg, Glucuronic acid zinesalt (2;1)-3 Water 76,6 mg (=10 mg Zn), Riboflavin-5-phosphate- monosodium salt x 2H₂O (Vitamin B₂) 10 mg, Hydroxocobalamin (Vitamin B₁₂) 1000 µg, Sodium-selenite x 5 H₂O 100 µg).

• The bodys own antioxidative enzymes are depending on trace elements: Glutathionperoxidaes on Selenium, SOD on Iron and Mangan, Catalases on zinc, Mangan and cooper, that should be taken in daily: Selenium : 200 Micrograms, Zinc 15Mg. Immureactions are depending on vitamins and Antioxidants: Vitamin A 2300 Mcgr. (daily), Vitamin D-3 (preferably in oleic from) 10 Microgr. (Daily) Beta Carotene (20Mg. daily) Vitamin E 800 Mg.) Vitamin C (2000Mg.) Alpha Liponic Acid 600 Mg. daily) Vitamime B1 100 Mg. daily, Vitamin B2 100 Mg. daily) Vitamin B6 100 Mg. daily Vitamin B5 (Panthotenic Acid 500 Mg Vitamin B7 (Biotine) 100 Mg. daily Vitamin B9 (Folic Acid) 400 Mcgr. Vitamin B12 500 Mcgr. Daily) The trace elements vitamin A, Beta carotene, B12 and E induce a higher activity of T-4 cells, killer cells and macrophages and a higher proliferation of lymphocytes.

• The necessary daily intake of easy digestible proteins can be a achieved by means of whey proteins, made from whey by means of special filtration methods that keep its active components.(Products made from goat whey induce lesser allergenic reactions than the ones made from cow whey).

• Overcoming deficiencies through various trace elements, amino acids, vitamins, vital mushrooms and plant compounds (co-enzyme Q10, L-glutathione, folic acid, lecithin, lutein, manganese, orotic acid, pangamic acid, selenium, magnesium, humic acid,
chromium, zinc, L-arginine, L-cysteine, L-glutamine, L-glycine, L-histidine, L-isoleucine, L-lysine, L-tyrosine, grape seed extract, lingzhi, Agaricus, wild yam roots and vitamins B1, B2, B3, B5, B6 B12, C, D, and E, and and by Alpha Liponic Acid, Co-enzyme Q10, reduced glutathione, and phosphatidylserine, all of which act to impede cancer and have anti-inflammatory, anti-allergic, anti-bacterial, anti-viral and detoxifying effects and support defence, circulation and metabolism (in the brain). They also can support mitochondrial activities, the formation of their membranes and the repair of mitochondrial DNA damage and thus cellular activities in all organs.

- The impact of mercury, aluminium, lead, arsenic and other heavy metals through amalgam dental fillings, vaccine substrates, contaminated water and foodstuffs that trigger autoimmune reactions can be reduced by the intake of Chlorella algae, Ramson extract and other plant substances, as well as coriander tincture, alpha lipoic acid, N-acetyl cysteine, selenium, zinc and chelating substances such as DMPS) that can be administrated after labour analysis.

- The electron transport in the respiratory chain of mitochondria can be improved with the co-enzyme Q10 (100 – 200 mg daily). The mitochondrial activities, the development of membranes and the repair of damage to mitochondrial DNA can be supported by folic acid (5 – 20 mg daily), alpha lipoic acid (300 – 600 mg daily), through vitamin B1 (150 – 300 mg daily), B6 and B12 and doses of selenium (200-400 mcg daily), zinc (10 mg daily), magnesium, manganese and the medicinal mushroom Lingzhi, as well as through chromium (100 – 300 micrograms daily) and uridine (the latter in molasses, 2 dessert spoons daily) and soy lecithin (1-2 dessert spoons daily), methionine (500-1000 mg daily) and Magnesium Dihydrate 1 table spoon daily.

- Multiple unsaturated omega-3 and omega 6 (from argan oil, krill oil, coco oil, L-carnitine and silicon dioxide) or hemp oil, linseed oil, safflower oil and cumin oil (5-6 dessertspoon per day) can improve oxygen absorption in cells, the cell envelope and improve their permeability. Micro-algae (e.g. chlorella algae) 3-4g per day, hemp oil, oenothera oil and fish oil (3 dessert spoons daily), as prostaglandin modulators, can stimulate cellular immunity. In severe cases, opportunistic infections can be treated by selective cyclooxygenase-2 inhibitors and gamma globulins.

- Mitochondria regulate cell metabolism and cell transformation and re-transformation. Enzymes in the mitochondria are governed by ions that in turn are controlled by over 300 mineral salts that are present in organisms. A sufficient supply is possible with base mineral salt mixtures (coral sediment salts). Thanks to capsules resistant to gastric juices they can directly reach the small intestine. (High doses of base compounds are not indicated in cases of tumour formation).

- Parasites (for example worms) block the release of NO. At an attack against it by means of NO, tissue of the body would be destroyed. Papaya leaves, as a tea, or Papaya semen act against gut parasites. Thiocanates in onions, broccoli, white cabbage and garlic and glucoronic acid (in Kombucha) activate detoxifying enzymes and support the breakdown of toxins in the liver, that can also be supports herbal substances (such as Marianic thistle)

- Fungal infestations of the skin and mouth infections can be treated by grapefruit pip extracts (drops) or by emulsions obtained from them which are effective against a
diversity of fungi, viruses and gram-positive and gram-negative bacteria and by hand creams containing sulphur, tea tree oil or acidophilus. Vaginal fungi can be treated by means of tampons containing pro-biotic bacteria (to be changed 2-4 times daily for two weeks). Fig warts and various kinds of herpes can be treated by an emulsion made from mixed minerals, herbal substances and olive oil, which has to be applied on the affected part for at least 3 hours or over night. Additionally Spenglersan Colloid G, a homeopathic compound derived from bacteria can be sprayed on the affected parts several times daily and ribbed in inside of the elbows (For 6-8 weeks). Besides changes in nutrition after a nutrition-antibody test the basic treatment consists of the pro-biotics, trace elements, bovine Colostrum and of infusions with Lysin (2 grams) and mixed infusions with amino acids, vitamins and minerals (see above).

- The balance between cell-mediated immunity and antibody immunity (Th1 and Th2 cytokine profile) is controlled by the hormonal stress axis between the hypothalamus, the pituitary and the adrenal glands. The stress hormone, cortisol, produced in the adrenal glands activates the antibody response, its hormonal counterpart, DHEA, stored throughout the organism, the cell-mediated response. A continuous shift of the stress axis towards cortisol can be corrected by doses of DHEA-S. Continuous use of preparations, sprays and skin creams with cortisone and the use of steroid hormones (e.g. for improved muscle formation), correspondingly leads to a reduction in lymphocytes and their functions and thus to the onset of viral and fungal infections and Kaposi’s sarcoma.

- Stress can be relieved by psycho-social counselling, soft body work, autogenic training, stretching, Alexander’s technique, and massage and by natural sleeping potions, through refraining from drugs to pass over natural limits of performance (coffee, sugar, alcohol, nicotine, cannabis, amphetamines, ecstasy, cocaine and heroin) that lead to an increased release of stress hormones. The amino acid, tryptophan, which is converted to serotonin, helps against depression.

- Repeated inflammation reactions due to infections (hepatitis, venereal diseases, giardiasis etc.) which can be transmitted via sweat, sputum, semen and blood, can be averted by the avoidance of small injuries, careful treatment of wounds, the use of condoms and rubber gloves in anal practices and the avoidance of oral contact to the anus. Lymph node swellings, fungal infestations and degenerative transformations in tissues (Kaposi’s sarcoma), can be avoided by refraining from nitrite inhalation (poppers).

- By avoiding high doses of coagulation proteins in blood preparations.

…cellular endosymbiosis and a flexible immune response can be restored in HIV test positive persons and AIDS patients. If, temporarily, antibiotics are administrated then this basis therapy must be continued. If differentiated labour analysis and infusions are not available ART treatment cannot be terminated. (Adverse effects of ART can be reduced by additional treatments http://www.ncbi.nlm.nih.gov/pmc/articles/PMC20026)

The success of this immune system supporting cellsymbiosis therapy, which has to be adapted to individual disease patterns such as overgrowing resistant strains and dysfunctions due to the effects of antibiotics of various classes on cell metabolism (Antibiotics A-Z http://ummafrapp.de/skandal/versch.%20Texte/Antibiotics_A-Z.pdf) can be established by measuring trace elements, stress hormone profiles, T4:T8 cell ratios, macrophage activation (neopterin test), the serum ferritin levels, the glutathione levels in plasma and in T4 helper cells and other labour parameters.

More information on treatment to re-establish mitochondrial functioning can be taken from the book Chronically Healthy by Ralf Meyer (Excerpt at: http://www.ummafrapp.de/krebs/Meyer/Chronically_healthy.pdf)

Or from his E-book available at:
http://heilpraktiker-medienshop.de/eBook/204/Chronisch-gesund-eBook-English

Information on education in cell symbiosis therapy at: http://www.cst-academy.co.uk/

Study group AIDS therapy c/o F. de Fries, Eglistr. 7, CH-8004 Zürich (Switzerland)
E-Mail: felix.defries@gmail.com

Please support our information services with a contribution to:
de Fries Felix, 8004 Zürich (Switzerland)
IBAN: CH47 0900 0000 8018 4058 5
SWIFT: POFICHBEXXX
Swisspost, Bern

Purpose of payment: Study Group AIDS Therapy

Disclaimer: The contents of this document are for informational purposes only and are not to be construed as medical advice or prescription of nutritional supplements. Please consult with a qualified health care practitioner before undertaking any new health regimen. Furthermore these recommendations represent a personal document for the private use of the receiver. Any presentation of this document on the internet is illegal